首页> 外文OA文献 >Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems
【2h】

Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems

机译:求解随机二次方程组几乎同样容易   解决线性系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the fundamental problem of solving quadratic systems of equationsin $n$ variables, where $y_i = |\langle \boldsymbol{a}_i, \boldsymbol{x}\rangle|^2$, $i = 1, \ldots, m$ and $\boldsymbol{x} \in \mathbb{R}^n$ isunknown. We propose a novel method, which starting with an initial guesscomputed by means of a spectral method, proceeds by minimizing a nonconvexfunctional as in the Wirtinger flow approach. There are several keydistinguishing features, most notably, a distinct objective functional andnovel update rules, which operate in an adaptive fashion and drop terms bearingtoo much influence on the search direction. These careful selection rulesprovide a tighter initial guess, better descent directions, and thus enhancedpractical performance. On the theoretical side, we prove that for certainunstructured models of quadratic systems, our algorithms return the correctsolution in linear time, i.e. in time proportional to reading the data$\{\boldsymbol{a}_i\}$ and $\{y_i\}$ as soon as the ratio $m/n$ between thenumber of equations and unknowns exceeds a fixed numerical constant. We extendthe theory to deal with noisy systems in which we only have $y_i \approx|\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle|^2$ and prove that ouralgorithms achieve a statistical accuracy, which is nearly un-improvable. Wecomplement our theoretical study with numerical examples showing that solvingrandom quadratic systems is both computationally and statistically not muchharder than solving linear systems of the same size---hence the title of thispaper. For instance, we demonstrate empirically that the computational cost ofour algorithm is about four times that of solving a least-squares problem ofthe same size.
机译:我们考虑在$ n $变量中求解二次方程组的基本问题,其中$ y_i = | \ langle \ boldsymbol {a} _i,\ boldsymbol {x} \ rangle | ^ 2 $,$ i = 1,\ ldots, \ mathbb {R} ^ n $中的m $和$ \ boldsymbol {x} \是未知的。我们提出了一种新颖的方法,该方法以借助光谱方法进行的初始猜测计算为起点,并通过像Wirtinger流动方法一样使非凸函数最小化来进行。有几个关键的区别特征,最显着的是,独特的目标功能和新颖的更新规则,这些规则以自适应方式运行,并且丢弃项对搜索方向的影响太大。这些谨慎的选择规则提供了更严格的初始猜测,更好的下降方向,从而提高了实践能力。从理论上讲,我们证明对于某些非结构化的二次系统模型,我们的算法以线性时间(即与读取数据$ \ {\ boldsymbol {a} _i \} $和$ \ {y_i \方程和未知数之间的比率$ m / n $超过固定的数值常数时,即为$。我们扩展了该理论以处理只有$ y_i \ approx | \ langle \ boldsymbol {a} _i,\ boldsymbol {x} \ rangle | ^ 2 $的噪声系统,并证明我们的算法达到了统计精度,几乎无法改善的我们用一些数值示例来补充我们的理论研究,这些数值示例表明,求解二次系统在计算和统计上都比求解相同大小的线性系统难得多-因此,本文的标题为:例如,我们凭经验证明算法的计算成本约为解决相同大小的最小二乘问题的四倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号